Building Controls designed for Clean Energy and a Sustainable Future

Director of Marketing Building Automation Johnson Controls, Inc.

Classic Definition of Sustainability

New Organizational Metric

Triple Bottom Line

Environmental Impact of Buildings

Americans spend as much as 90% of time indoors.

Buildings:

- · Consume almost 40% of all energy.
- Add 40% to atmospheric emissions.
- · Use 68% of all electricity.
- Use 12% freshwater, 88% potable water.
- Take up to 40% of the municipal solid waste stream.
- · Exploit significant amounts of land.

1990-2000

- Energy Cost Savings \$16.7 billion
- Electric Energy Savings 166 million MWh
- Electric Demand Reductions 2,500 MW
- Carbon Dioxide Emissions Reduction 217 Million Tons
- Enough energy saved to power all California households for 2 years

Total Energy Savings Actions

1990-2020

- \$95 billion in energy savings
- 981 million MWh in electric energy savings
- 6,000 MW in electric demand reduction (15 new 400 MW power plants)
- 5.3 billion MMBTU reduction in direct fuel use
- Total energy savings
 - 4% of of Kyoto goals
 - Could power all California households for 13 years

Additional Characteristics of Energy Efficient Green Buildings

- Optimal environmental and economic performance
- Increased efficiencies, saving time and resources
- Satisfying, productive, quality indoor spaces
- Whole-building design, construction, and operation over entire life cycle
- Fully integrated approach teams, processes, systems

Economic Benefits of Green Design

Lower Construction Costs

- Reduced site preparation and landscaping
- Lower waste disposal costs by 50 to 98 percent

Reduced Operating Costs

- Lower utility costs by 20 to 50 percent
- Reduced maintenance costs

Higher Valuation of Building

- Rule of Thumb: divide reduction in annual operating costs by 10 percent to get increased value of building.
- Up to \$4 increased valuation for every \$1 spent.

Economic Benefits of Green Design

More Productive Environment

- Better tenant and worker attraction/retention
- Less absenteeism by 45 percent
- Higher productivity up to 16 percent

Reduced Insurance and Risk of Liability

- Healthy occupants, greater occupant satisfaction
- · Lower environmental impacts
- Streamlined regulatory approvals

Higher Visibility and Marketability

What is a Control System?

- A control system consists of hardware and software that is designed, installed, commissioned and maintained to provide buildings, the people within them and the business processes they facilitate with:
 - Safety
 - Security
 - Productivity
 - Efficiency (sustainability)
 - Comfort (stress reduction)

What you Thought you'd Hear

- Near-optimal control solutions
- Advanced digital control
 - PRAC
 - P-Adaptive
- Process Modeling
- Predictive diagnostics
 - Equipment signatures
- Resource tracking

Not to be Completely Outdone

- ODS (Operating Deflection Shape)
 - Vibration data applied to the 3dimensional model
 - •A movie file is created to show the movement at several different frequencies.

Systems Requirements Today

- Less data...
 more usable information
- Ease of use
- Open systems and vendor independence
- · "Web interface"
- Current technology, but protect my investment

System Requirements Tomorrow

- · Less data, more information
- · Ease of use
- Open systems and vendor independence
- "Enterprise interface"
 - Talk to any system, any time
 - Contribute to lowest cost of ownership
- · Appropriate technology "built in"

IT vs BAS R&D Spending IT BAS Number of Companies

Convergence

- Systems that communicate with each other
- Systems that talk to enterprise applications
- Systems that talk to us anywhere, anytime
 - Across the Web
 - To our portable devices
 - In a format we can use
 - Regardless of who we are

Before	Today	Vision
Workstation Based	Client / Server	Networked Computing
Supervisory Controller	Automation Engine	More capability at the core
Proprietary	Open/Standard	Infrastructure
Operating Systems	OS	Compatibility
Mfg designed Field	Open/Standard	Device
Protocols	Protocols	Interoperability
Proprietary	Open/Standard	Data
Data Storage	Data Storage	Interoperability
Physical Plant	IT Infrastructure	Information:
Component	Component	Ubiquity

Organizational Cooperation

- Design the IT infrastructure as a key component of the facility
- "You can't lead if your infrastructure won't follow"
- Establish dialog with IT resulting in:
 - Understanding of mutual needs
 - Doing what is best for the organization
 - Usability and access
 - Security issues resolution

Changes in Attitude

- Building Automation Systems (BAS)
 - Energy Management and Control Systems
 - Building Management and Control Systems
 - A vital piece of the Enterprise Management System
- One Big Time Clock?
 - Lack of attention to advanced features
 - Ability to communicate information:
 - People
 - Systems

Enabling Technologies Application Engines & Servers

- Advanced Functionality
 - User Interface (UI)
 - Data server
 - Programming tools
- · Ease of Use
 - Beyond web pages
 - Automatic Web interface
- Connectivity standards
 - Deliver the benefits of convergence
 - SOAP
 - XML

Standard Operating Systems A Change in Direction

- Current products are based on control industry technology
- Evolution to standard Operating Systems adds advanced IT in the physical infrastructure to deliver benefits

Key Technologies Standard Protocols

- Integrated systems must provide function & benefits
- BACnet and LonMark are not enough
- BACnet and LonWorks are both valuable tools in certain situations but neither is the best single answer for most
- · Supplement with ModBus, DHP, DALI

Web Services?

- XML Web services are the fundamental building block in the move to distributed computing on the Enterprise network
- XML Web services extend the World Wide Web infrastructure to provide the means for hardware and software to connect to other applications (M to M)
- XML Web services use existing communications protocols for transportation (SOAP)
- Efforts are in place now to standardize the web service interface to building systems

Enabling Technologies Open Data Storage

- Open DataBase Connectivity (ODBC)
 - Data definition
- Structured Query Language (SQL)
 - Data exchange language
- eXtensible Markup Language (XML)
- · Open, proprietary standards
 - Oracle

Design Goals

- Systems that communicate with each other Via standards
- Systems that talk to enterprise applications
- · Systems that talk to us anywhere
- Systems that are easy to learn and operate
- Systems that leverage technology
 - Leading edge
 - Not bleeding edge

Design Guidelines

- · Connected does not mean tethered
 - Use copper as a last resort
 - Coverage must be complete
- · Small is better
 - Mobile devices combine power and convenience
 - Use standard operating environments
- · Monogamy isn't always desirable
- Share information (guard data)
- Choose static (in place) over dynamic
- Don't just do something; sit there (listen)

Design Process

- · Begin before the beginning
- · Use left to right thinking
- IT has a place at the table along with the other trades (electrical, plumbing, mechanical)
 - Could be "technology contractor"
- Technology should be value engineered <u>in</u> at the beginning, not <u>out</u> at the end
- Look TCO, not TIC or even TOC
- Functionality trumps everything

Summary

- · The controls end game is changing
 - From facility to enterprise
 - Closed to open (proprietary to standard)
 - Private to public
 - Separate to shared
- The development process must change
- Technology is second only to functionality
 - Appropriate
 - Applied correctly

What About Energy

- Now we have the infrastructure
 - To share information that is easily interpreted
 - To develop software that is transportable
 - That leverages the IT investments we make
 - To enable true enterprise wide energy applications
 - · Enterprise wide metering and billing
 - · Energy modeling and forecasting
 - "What if" scenarios
 - · Conformance and impact statements

Summary

- The controls end game is changing
 - From facility to enterprise
 - Closed to open (proprietary to standard)
 - Private to public
 - Separate to shared
- The development process must change
- Technology is second only to functionality
 - Appropriate
 - Applied correctly

Case Studies

LEED Point Categories

- Sustainable Sites
- Materials & Resources
- Water Efficiency
- Energy & Atmosphere
- Indoor Environmental Quality
- Innovation

Questions?

